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Photochemical Air Pollution

• Photochemical air pollution is caused by 
the interaction of sunlight with oxides of 
nitrogen (NOx = NO + NO2) and volatile 
organic compounds (VOCs) emitted into 
the atmosphere.



Emissions of VOCs and NOx

• ∼1,500 Million tons per year of organic 
compounds (not including methane) are 
emitted into the atmosphere from natural 
(or biogenic) sources and from human 
activities.

• On a global basis, 80-90% of these non-
methane organic emissions are from 
vegetation.

• NOx is emitted mainly from combustion 
sources – vehicles and fossil-fueled power 
plants being prime examples.



Biogenic VOCs from vegetation



Anthropogenic emissions



Consequences of VOC emissions

In the presence of oxides of nitrogen (NOx) 
and sunlight, a series of reactions occur 
leading to photochemical air pollution, 
which includes:

• Formation of ozone and other toxic 
chemicals.

• Formation of secondary aerosol (in 
addition to directly emitted aerosol).
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Afternoon, 
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The hydroxyl (OH) radical is a key reactive intermediate



The atmosphere is a large chemical reactor



Current research at APRC
• Kinetics, products and mechanisms of gas-

phase reactions of individual VOCs with OH 
radicals, NO3 radicals and O3.

• Chemical pathways leading to formation of 
secondary organic aerosol from reactions of 
individual VOCs.

• Ambient measurements of selected organics, 
including PAHs and nitro-PAHs, and comparison 
with laboratory studies.

• Real-time ambient measurements of selected 
chemical species by spectroscopic methods.



Gas-phase studies

Janet Arey
Roger Atkinson



One of three ∼7000 liter 
volume Teflon chambers.

20% of blacklamps are on.



5870 liter volume evacuable chamber



5870 liter volume evacuable chamber



Direct air sampling atmospheric pressure ionization 
tandem mass spectrometer (API-MS/MS)



Gas and aerosol studies: alkanes
• Liquified petroleum gas (LPG).

• 50-60% of gasoline.

• 50-60% of organics in vehicle exhaust.

• ∼50% of non-methane VOCs in air in urban 
areas.
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Alkanes react with OH radicals in the atmosphere
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Product yields (as of 1982-1994)

alkane % carbonyls % nitrates % missing

n-butane 84 8 8

n-pentane ∼30 12 ∼58

n-hexane low 21 high

From data in Carter et al., 1976; Atkinson et al., 1982.



Missing products postulated to be 1,4-hydroxycarbonyls, 
formed after alkoxy radical isomerization (Carter et al., 1976)

The isomerization can 
only occur for larger 

alkanes
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Further progress was halted until new 
analytical techniques became available
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Solid-Phase MicroExtraction fibers
Can be coated with a chemical for on-fiber 

derivatization of carbonyl-containing 
compounds, followed by GC analyses.
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Fibers are retractable.  After coating with PFBHA, the 
fibers are exposed to the chamber contents with the 

chamber mixing fan on for typically 5 min.

Fiber, ∼20 mm long



Product yields (%) in air at 50% RH

alkane carbonyls nitrates hydroxy-
carbonyls

hydroxy-
nitrates

n-pentane 50 10.5 54 (36) 2.6

n-hexane 10 14 57 (53) 4.6

n-heptane <1 18 51 (46) 4.7

n-octane <1 23 53 (27) 5.4

Yields in parentheses from API-MS in dry air (3-5% RH)



Success so far!

But what happens to 1,4-hydroxycarbonyls in the 
atmosphere?



WAVENUMBER (cm-1)

650 850 1050 1250 1450 1650 1850

A
B

S
O

R
B

A
N

C
E

0.00

0.20

0.40

0.60

0.80

1.00
5-Hydroxy-2-pentanone   

After 70 min

4,5-Dihydro-2-methylfuran  

Product

FT-IR spectra of a 
5H2PO - N2

mixture in the dark

5-Hydroxy-2-pentanone (5H2PO) is the only 
commercially available 1,4-hydroxycarbonyl
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5-hydroxy-2-pentanone

4,5-dihydro-2-methylfuran

5-Hydroxy-2-pentanone has lifetime of 1.1 hr in dry air.  

4,5Dihydro-2-methylfuran is stable in dry air, but converts to 
5H2PO at 5% relative humidity, with a lifetime of 3.5 hr.



Reactions of 5-hydroxy-2-pentanone 
and 4,5-dihydro-2-methylfuran

• 4,5DH2MF reacts very rapidly with OH radicals, 
NO3 radicals, and O3.  Daytime lifetimes:

n-Pentane: 1.5 day (OH)
5-Hydroxy-2-pentanone: 9 hr (OH)
4,5-Dihydro-2-methylfuran: 38 min (OH)

7 min (O3)



Relative humidity (%) at 296 K
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Aerosol-phase studies
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skimmers nozzle
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quadrupole
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Reactions of 1,4-Hydroxycarbonyls
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Desorption Profiles of SOA from 
Decane and Pentadecane + OH/NOx
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Zingsong Zhang

Spectroscopic studies



Cavity Ring-Down Spectroscopy (CRDS)

Iin Iout

High-reflectivity Mirrors
R ≥ 99.99 % 

L

Detector

• Quantitative and
absolute measurements

• High sensitivity with a long effective
absorption path (~ km)
in a compact setup (~ m)

• Spectroscopic selectivity
• Real-time and in-situ detection

Gas sample
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Usable data in ~ 3.5 τ, effective absorption length ~ 21 km (Speed of light = 300 m/μs)



Mirror

Cavity Ringdown Spectrometer

Mirror
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Number Density of HONO (×1013cm-3)
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CRDS Detection Sensitivity for NO2

Wavelength 405.26 nm
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Variations in NO2 concentration during daytime
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Thank you for your attention
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